Sodium current in rat and cat thalamocortical neurons: role of a non-inactivating component in tonic and burst firing.
نویسندگان
چکیده
The properties of the Na+ current present in thalamocortical neurons of the dorsal lateral geniculate nucleus were investigated in dissociated neonate rat and cat neurons and in neurons from slices of neonate and adult rats using patch and sharp electrode recordings. The steady-state activation and inactivation of the transient Na+ current (INa) was well fitted with a Boltzmann curve (voltage of half-maximal activation and inactivation, V1/2, -29.84 mV and -70.04 mV, respectively). Steady-state activation and inactivation curves showed a small region of overlap, indicating the occurrence of a INa window current. INa decay could be fitted with a single exponential function, consistent with the presence of only one channel type. Voltage ramp and step protocols showed the presence of a noninactivating component of the Na+ current (INaP) that activated at potentials more negative (V1/2 = -56.93 mV) than those of INa. The maximal amplitude of INaP was approximately 2.5% of INa, thus significantly greater than the calculated contribution (0.2%) of the INa window component. Comparison of results from dissociated neurons and neurons in slices suggested a dendritic as well as a somatic localization of INaP. Inclusion of papain in the patch electrode removed the fast inactivation of INa and induced a current with voltage-dependence (V1/2 = -56.92) and activation parameters similar to those of INaP. Current-clamp recordings with sharp electrodes showed that INaP contributed to depolarizations evoked from potentials of approximately -60 mV and unexpectedly to the amplitude and latency of low-threshold Ca2+ potentials, suggesting that this noninactivating component of the Na+ channel population plays an important role in the integrative properties of thalamocortical neurons during both tonic and burst-firing patterns.
منابع مشابه
Power Spectral Density Analysis of Purkinje Cell Tonic and Burst Firing Patterns From a Rat Model of Ataxia and Riluzole Treated
Introduction: Purkinje Cell (PC) output displays a complex firing pattern consisting of high frequency sodium spikes and low frequency calcium spikes, and disruption in this firing behavior may contribute to cerebellar ataxia. Riluzole, neuroprotective agent, has been demonstrated to have neuroprotective effects in cerebellar ataxia. Here, the spectral analysis of PCs firing in control, 3-acety...
متن کاملOn the action of the anti-absence drug ethosuximide in the rat and cat thalamus.
The action of ethosuximide (ETX) on Na+, K+, and Ca2+ currents and on tonic and burst-firing patterns was investigated in rat and cat thalamic neurons in vitro by using patch and sharp microelectrode recordings. In thalamocortical (TC) neurons of the rat dorsal lateral geniculate nucleus (LGN), ETX (0.75-1 mM) decreased the noninactivating Na+ current, INaP, by 60% but had no effect on the tran...
متن کاملState-Dependent Modulation of Gap Junction Signaling by the Persistent Sodium Current
THALAMIC NEURONS FLUCTUATE BETWEEN TWO STATES: a hyperpolarized state associated with burst firing and sleep spindles, and a depolarized state associated with tonic firing and rapid, reliable information transmission between the sensory periphery and cortex. The thalamic reticular nucleus (TRN) plays a central role in thalamocortical processing by providing feed-forward and feedback inhibition ...
متن کاملDynamics and diversity in interneurons: a model exploration with slowly inactivating potassium currents.
Recent experimental and model work indicates that slowly inactivating potassium currents might play critical roles in generating population rhythms. In particular, slow (<1-4 Hz) rhythms recorded in the hippocampus correlate with oscillatory behaviors in interneurons in this frequency range. Limiting the ion channels to the traditional Hodgkin-Huxley sodium and potassium currents, a persistent ...
متن کاملFourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model.
We performed intracellular recordings of relay neurons from the lateral geniculate nucleus of a cat thalamic slice preparation. We measured responses during both tonic and burst firing modes to sinusoidal current injection and performed Fourier analysis on these responses. For comparison, we constructed a minimal "integrate-and-fire-or-burst" (IFB) neuron model that reproduces salient features ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 3 شماره
صفحات -
تاریخ انتشار 1998